3.111 \(\int \frac{c+d x}{\sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=246 \[ \frac{2 \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (c-\left (1-\sqrt{3}\right ) d\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}+\frac{2 d \sqrt{x^3+1}}{x+\sqrt{3}+1}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} d (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

(2*d*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*d*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] +
 x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 + x)/(1 + Sqrt[3] + x)
^2]*Sqrt[1 + x^3]) + (2*Sqrt[2 + Sqrt[3]]*(c - (1 - Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2
]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] +
 x)^2]*Sqrt[1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0810052, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {1878, 218, 1877} \[ \frac{2 \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (c-\left (1-\sqrt{3}\right ) d\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}+\frac{2 d \sqrt{x^3+1}}{x+\sqrt{3}+1}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} d (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)/Sqrt[1 + x^3],x]

[Out]

(2*d*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*d*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] +
 x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 + x)/(1 + Sqrt[3] + x)
^2]*Sqrt[1 + x^3]) + (2*Sqrt[2 + Sqrt[3]]*(c - (1 - Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2
]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] +
 x)^2]*Sqrt[1 + x^3])

Rule 1878

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{c+d x}{\sqrt{1+x^3}} \, dx &=d \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx+\left (c-\left (1-\sqrt{3}\right ) d\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx\\ &=\frac{2 d \sqrt{1+x^3}}{1+\sqrt{3}+x}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} d (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{2 \sqrt{2+\sqrt{3}} \left (c-\left (1-\sqrt{3}\right ) d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0102201, size = 42, normalized size = 0.17 \[ c x \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};-x^3\right )+\frac{1}{2} d x^2 \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};-x^3\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)/Sqrt[1 + x^3],x]

[Out]

c*x*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3] + (d*x^2*Hypergeometric2F1[1/2, 2/3, 5/3, -x^3])/2

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 291, normalized size = 1.2 \begin{align*} 2\,{\frac{d \left ( 3/2-i/2\sqrt{3} \right ) }{\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}} \left ( \left ( -3/2-i/2\sqrt{3} \right ){\it EllipticE} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) + \left ( 1/2+i/2\sqrt{3} \right ){\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) \right ) }+2\,{\frac{c \left ( 3/2-i/2\sqrt{3} \right ) }{\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)/(x^3+1)^(1/2),x)

[Out]

2*d*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*(
(x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*((-3/2-1/2*I*3^(1/2))*EllipticE(((1+x)/(3/2-1/
2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+(1/2+1/2*I*3^(1/2))*EllipticF(((1+x)/(3
/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)))+2*c*(3/2-1/2*I*3^(1/2))*((1+x)/(3
/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I
*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3
^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x + c}{\sqrt{x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x + c)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{d x + c}{\sqrt{x^{3} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral((d*x + c)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Sympy [A]  time = 1.38533, size = 61, normalized size = 0.25 \begin{align*} \frac{c x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} + \frac{d x^{2} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac{5}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(x**3+1)**(1/2),x)

[Out]

c*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3)) + d*x**2*gamma(2/3)*hyper((1/2,
2/3), (5/3,), x**3*exp_polar(I*pi))/(3*gamma(5/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x + c}{\sqrt{x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x + c)/sqrt(x^3 + 1), x)